基于超宽带(UWB)范围的多机器人系统中相对定位的系统最近已成为GNSS贬低环境的强大解决方案。可伸缩性仍然是主要挑战之一,尤其是在临时部署中。最近的解决方案包括系统中不同机器人或节点的主动和被动定位模式的动态分配。随着较大规模的系统的分布越来越多,关键的研究问题出现在此类本地化系统的安全性和可信度领域。本文研究了协作决策过程与分布式分类帐技术的潜在整合。具体而言,我们研究了一种方法,用于在区块链中智能合约中运行UWB角色分配算法的方法。在以前的作品中,我们分别研究了ROS2与HyperLeDger织物区块链的集成,并引入了一种用于基于UWB的本地化的新算法。在本文中,我们通过(i)运行实验扩展了这些工作移动机器人。这使我们能够通过增强的身份和数据访问管理在安全且可信赖的过程中提供相同的功能。我们的结果表明,UWB角色分配对六个自动移动机器人的连续变化空间形成的有效性,同时证明对添加不影响本地化过程的区块链层的潜伏期和计算资源的影响很小。
translated by 谷歌翻译
随着自动机器人解决方案无处不在的越来越多,对它们的连通性和多机器人系统中的合作的兴趣正在上升。当前研究问题的两个方面是机器人安全性和对拜占庭代理商的确保多机器人协作。已提出了区块链和其他分布式分类帐技术(DLT)来应对两个领域的挑战。但是,一些关键挑战包括现实世界网络中的可扩展性和部署。本文提出了一种集成IOTA和ROS 2的方法,以实现更可扩展的基于DLT的机器人系统,同时允许部署后进行网络分区耐受性。据我们所知,这是机器人系统IOTA智能合约的首次实施,以及与ROS2的首次集成设计,这与依赖以太坊的绝大多数文献相比。我们提出了一般的IOTA+ROS 2体系结构,导致耐隔离的决策过程,该过程也从嵌入式区块链结构中继承了拜占庭式公差属性。我们证明了在具有间歇性网络连接的系统中进行合作映射应用程序的拟议框架的有效性。在存在网络分区的情况下,我们在以太坊方面表现出了卓越的性能,在计算资源利用方面的影响很小。这些结果为分布式机器人系统中的区块链解决方案更广泛地集成开辟了道路,其连接性和计算要求较少。
translated by 谷歌翻译
近年来,多机器人系统已受到行业和学术界的越来越多的关注。除了需要对相对本地化的准确和强大的估计,对系统的安全性和信任对于实现更广泛的采用至关重要。在本文中,我们提出了一个使用HyperLeDger Fabric在工业应用中进行多机器人协作的框架。我们依靠区块链身份来进行地面和空中机器人的相互作用,并使用智能合约进行协作决策。使用超宽带(UWB)本地化进行自动导航和机器人协作,这扩展了我们以前在基于面料的车队管理方面的工作。我们专注于使用地面机器人和空中机器人检查仓库般的环境,并存储有关区块链中发现的对象的信息。我们衡量添加区块链层,分析交易延迟的影响,并将与区块链相关过程的资源利用与已经运行的数据处理模块进行比较。
translated by 谷歌翻译
在工业应用中,对系统的安全和信任是广泛采用的要求。区块链技术已成为解决身份管理并保护数据聚合和控制的潜在解决方案。但是,迄今为止的绝大多数作品都利用以太坊和智能合约,这些合同不可扩展或适合工业应用。据我们所知,本文介绍了ROS 2与Hyperledger织物区块链的首次集成。通过通过GO应用程序利用面料智能合约和ROS 2的框架,我们深入研究了使用区块链控制机器人,收集和处理其数据的潜力。我们证明了拟议框架对库存管理用例的适用性,其中使用不同的机器人检测给定区域中感兴趣的对象。旨在满足分布式机器人系统的要求,我们表明机器人的性能不会受到区块链层的显着影响。同时,我们提供了开发其他应用程序的示例,这些应用程序将面料智能合约与ROS 2集成在一起。我们的结果为在自主机器人系统中进一步采用区块链技术铺平了道路,以构建可信赖的数据共享。
translated by 谷歌翻译
This research presents ORUGA, a method that tries to automatically optimize the readability of any text in English. The core idea behind the method is that certain factors affect the readability of a text, some of which are quantifiable (number of words, syllables, presence or absence of adverbs, and so on). The nature of these factors allows us to implement a genetic learning strategy to replace some existing words with their most suitable synonyms to facilitate optimization. In addition, this research seeks to preserve both the original text's content and form through multi-objective optimization techniques. In this way, neither the text's syntactic structure nor the semantic content of the original message is significantly distorted. An exhaustive study on a substantial number and diversity of texts confirms that our method was able to optimize the degree of readability in all cases without significantly altering their form or meaning. The source code of this approach is available at https://github.com/jorge-martinez-gil/oruga.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
The recent emergence of new algorithms for permuting models into functionally equivalent regions of the solution space has shed some light on the complexity of error surfaces, and some promising properties like mode connectivity. However, finding the right permutation is challenging, and current optimization techniques are not differentiable, which makes it difficult to integrate into a gradient-based optimization, and often leads to sub-optimal solutions. In this paper, we propose a Sinkhorn re-basin network with the ability to obtain the transportation plan that better suits a given objective. Unlike the current state-of-art, our method is differentiable and, therefore, easy to adapt to any task within the deep learning domain. Furthermore, we show the advantage of our re-basin method by proposing a new cost function that allows performing incremental learning by exploiting the linear mode connectivity property. The benefit of our method is compared against similar approaches from the literature, under several conditions for both optimal transport finding and linear mode connectivity. The effectiveness of our continual learning method based on re-basin is also shown for several common benchmark datasets, providing experimental results that are competitive with state-of-art results from the literature.
translated by 谷歌翻译
Objective: Accurate visual classification of bladder tissue during Trans-Urethral Resection of Bladder Tumor (TURBT) procedures is essential to improve early cancer diagnosis and treatment. During TURBT interventions, White Light Imaging (WLI) and Narrow Band Imaging (NBI) techniques are used for lesion detection. Each imaging technique provides diverse visual information that allows clinicians to identify and classify cancerous lesions. Computer vision methods that use both imaging techniques could improve endoscopic diagnosis. We address the challenge of tissue classification when annotations are available only in one domain, in our case WLI, and the endoscopic images correspond to an unpaired dataset, i.e. there is no exact equivalent for every image in both NBI and WLI domains. Method: We propose a semi-surprised Generative Adversarial Network (GAN)-based method composed of three main components: a teacher network trained on the labeled WLI data; a cycle-consistency GAN to perform unpaired image-to-image translation, and a multi-input student network. To ensure the quality of the synthetic images generated by the proposed GAN we perform a detailed quantitative, and qualitative analysis with the help of specialists. Conclusion: The overall average classification accuracy, precision, and recall obtained with the proposed method for tissue classification are 0.90, 0.88, and 0.89 respectively, while the same metrics obtained in the unlabeled domain (NBI) are 0.92, 0.64, and 0.94 respectively. The quality of the generated images is reliable enough to deceive specialists. Significance: This study shows the potential of using semi-supervised GAN-based classification to improve bladder tissue classification when annotations are limited in multi-domain data.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译